
Next evolution of abstracting
away infrastructure?

Guest Lecture

Cloud Computing WS23/24
Frankfurt University of Applied Sciences

17th January 2024

ChatGPT was not used to create this presentation

Cloud Native

About

• Diploma in computer science with focus on operating

systems and networking technologies

• Studied philosophy with focus on meta & normative ethics

• 20 years of experience in the IT industry

• Obsessed with innovation, automation & tooling

• Leading an international team of cloud-, devops-,

kubernetes-, software engineers

Fabian Dörk
Director Cloud Native Services

Claranet GmbH

https://github.com/fuhbar
https://www.linkedin.com/in/fabian-d%C3%B6rk-954b04114/
https://www.xing.com/profile/Fabian_Doerk
https://twitter.com/fuhbaz

About

• Master in Theoretical and Computational Chemistry

• Over 10 years of experience in IT industry

• Leading and working together with a team of cloud-,

kubernetes engineers

Domenico Caruso
Team Lead – Cloud Native

Engineering

Claranet GmbH

https://github.com/fuhbar
https://www.linkedin.com/in/fabian-d%C3%B6rk-954b04114/
https://www.xing.com/profile/Fabian_Doerk

About the Team

• Multiple teams embracing software engineering,

cloud based and native workload, linux & windows

• Several platforms: AWS, GCP, Azure and on-

premise

• International: based in Germany, Spain, India with

over 6 nationalities and languages

• Annual team and family event

At a glance

• Founded in 1996

• Owner- managed

• 600 Mio € annualised revenues

• More than 10.000 B2B customers

• Global reach with operations in 11 counties

• More than 3.500 employees

We are experts for modernizing and running

critical applications, data and infrastructures 24/7

About: Claranet group

About: Claranet DACH

AddOn: Experts for

SAP Services

Workplace & Collaboration

Trainings

KHETO: Experts for

SAP Business Intelligence

SAP Business Warehouse

SAP Analytics

200+
Employees

2000
Founded

in Frankfurt

5
Locations

in DACH

2
Datacenter

in Germany

Claranet: Experts for

Cloud Services

Container/Kubernetes

Cyber Security

Network Services

Highly accredited with cloud vendors

Compliance

ISO
27001:2017

27017:2015

27018:2014

ISO
22301:2019

ISO
9001:2015

Zertifizierungen und Partnerschaften beziehen sich u.U.

nur auf einzelne Unternehmen der Claranet Gruppe

Partnerships

Managed Services

Microsoft 365

Security / Endpoint Management

Identity Management

Managed Services

Consulting Services

Business Intelligence

Security Services

SAP on Cloud

Security Assessments

Penetration Testing & Red Teaming

Security & Compliance Consulting

SOC Services: EDR, MDR

Penetration Testing as a Service

Microsoft

SAP

AWS

Linux

Cyber Security

Cloud Migration

Cloud Management

Managed Applications

Cloud Connect

MPLS

IPsec

SSL

Network Services
Managed Container Applications

Managed Kubernetes

DevOps Automation

Cloud Native Strategies

AWS, GCP, Azure

Private Cloud

Hybrid Cloud

Claranet ServicesClaranet Service Portfolio

Cloud Platforms

Cloud Services Cyber Security

Cloud Native

Training

Workplace & CollaborationSAP

24/7
Business SLA, Monitoring, Reporting,

Service Management

SAP

What expects you in this lecture?

• Cloud is everywhere and it is well researched, well discussed, and well defined. Beyond the sheer fact of

using someone elses computers new approaches emerging every day. One of them is the cloud native

movement. This lecture gives a little bit of historic background where we are coming from and why

something like cloud native exists in order to understand what the distinct traits compared to cloud based

workload are.

• Aim of this lecture are
- to make ourselves familiar with the underlying concepts

- to realise what different kinds of abstractionsKubernetes introduces

- to judge if the introduced complexities are for the good or for the bad

• Disclaimer: It is an opiniated view on Cloud Native, because we will focus on Kubernetes as the driver

for cloud native approaches only. Serverless is for another occasion to be discussed.

Poll

Who heard of Kubernetes outside of this lecture?

Who gained real-world experience with Kubernetes?

Who thinks Kubernetes is a useful technology?

@theunsteady5

https://unsplash.com/photos/4V1dC_eoCwg

What is Cloud Native?

C
lo

u
d

-N
a

ti
v
e

• Software generally considered as competitive advantage and therefore as

essential mean for value creation

• Software development enters center stage

• Agility fosters innovation and flexibility

• Microservices architecture decouples subsystems which then could be

developed, released, deployed independently

• Parallelization leads to increased pace

• Infrastructure abstraction enables developers to focus on value creation

Premises

C
lo

u
d

-N
a

ti
v
e

Definition: Cloud Native

Cloud Native

is structuring teams, culture, and technology

to utilize automation and architectures

to manage complexity and unlock velocity.

— Joe Beda (co-founder of Kubernetes)

C
lo

u
d

-N
a

ti
v
e

Guiding principles

• Design for performance (responsiveness, concurrency, efficiency)

• Design for automation (of infrastructure and development tasks)

• Design for resiliency (fault-tolerance, self-healing)

• Design for elasticity (automatic scaling)

• Design for delivery (minimise cycle time, automate deployments)

• Design for observability (cluster-wide logs, traces, and metrics)

A bit of history

Downsides:

• Conflicting aims

• Led to blame game: “It is your

machines, not my code!”

• Way too slow

Downsides:

• Demarcation line between Ops and
Dev remains blurry

• It was still necessary for developers

to SSH into servers in order to debug

problems

• Still too slow

Downsides:

• Puts lots of burden onto developers

• Alignment across teams difficult

without trading pace and flexibility

• Day 2 operations covered by

developers

• Does not scale!

Downsides:

• Significantly greater complexity

• Day 2 operations covered by

developers

• Focus on value creation jeopardized

• Who is responsible for compliance
and security?

Cloud Native Reference Model

Application first,

Infrastructure second!

Divide & Conquer: Decomposition of monoliths into microservices

Decoupling of software subsystems to minimise deadlocks and increase pace

Event-driven, asynchronous, scale-out technologies

Effectiveness over Efficiency!

Agile teams develop, test, release and deploy software independent

from each other

Agility promotes autonomy and decentralized decision-making

Gaining pace is the most important priority

Freeing developers from infrastructure and day 2 operations

Embrace GitOps!

Git is the single source of truth

Shipping software as containers

End to end automation from build, test, integration,

delivery, deployment

Autonomy also in regard to infrastructure: software
developers can easily deploy new services

Only way to introduce changes is through pipelines

and well-defined gates

Versioned infrastructure expressed as declarative

definitions of target state

Decouple workload

from infrastructure!

Abstraction layer provides

translation & realisation

Kubernetes as a platform to
build platforms

Platform sets boundaries,

ensures alignment, enforces

policies, checks compliance,
and mitigates security risks

Tightly couple DevOps and DevOps!

Specialised, cross-functional team operates platform

and microservices stack

Co-management via shared responsibility model

based on DevOps lifecycle

DevOps/SREs on both ends cooperate by sharing the

same mindset

Platform itself is subject of the software development

lifecycle and requires permanent advancements and

modifications

Application first, infrastructure second!

Cloud

Native

DevOps
Agile methodology rooted in the idea of cross-functional

teams with shared responsibilities throughout lifecycle

continuously producing value to the customer

Microservices
Decomposition of monolithic applications into

smaller building blocks to open up parallel

development work streams

12 Factor App
Methodology for building SaaS apps that

are suitable for deployment on modern

cloud platforms

API First
A product centric approach to designing and

developing consistent and reusable APIs which

accelerates the development process, ensures
interoperability, and fosters innovation

Kubernetes
Platform to deploy any set of applications

shipped as containers transparently across a

fleet of compute nodes and run them reliably
and scalable

Continuous Delivery
Accelerate value delivery by leveraging

automation to reliably push code into

production continuously in a greater
frequency

Infrastructure as Code
Managing and provisioning of cloud resources through

declarative machine-readable definitions maintained in

version control systems

Cloud
Flexible usage of infrastructure through automation

to build highly scalable stacks

Containers
Ship applications as standardised packages and run

them as portable and lightweight operational unit with a

well-defined interface

Service Meshes
A tool for adding observability, security, and reliability features by

transparently inserting this functionality at the platform layer

Kubernetes architecture

Containers as universal shipping format

• Lightweight os-level virtualisation

• Isolation of resources (cpu, memory,

storage, network)

• Initially based on Linux cgroup v2,

namespaces, and union filesystems

• Standardized interface and format

(OCI)

• Clear demarcation line between Dev

and Ops

• Tight coupling of application and

runtime (!)

So, what the heck is Kubernetes?

• „Kubernetes is a portable, extensible, open-source platform for

managing containerized workloads and services, that facilitates

both declarative configuration and automation.“ *

• Trivia
- Name originates from Greek, meaning helmsman

or pilot ([ˌkuːbərˈnetiːz])

- Abbreviated by k8s

- Open-sourced in 2014 by Google

- Hit the first production-grade version1.0.1 in July
2015

- Current version 1.27.1

- Built upon 20 years of experience Google has
with running productionworkloads at planet-scale

• CNCF is a vibrant community

• Papers
- „Large-scaleclustermanagement at Google with Borg“

Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David

Oppenheimer, Eric Tune, John Wilke; Proceedings of the

European Conference on Computer Systems (EuroSys), ACM,

Bordeaux, France (2015)

https://research.google/pubs/pub43438/

- „Borg, Omega, and Kubernetes - Lessons learned
from three container-management systems overa

decade“
Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer,

John Wilkes; ACM Queue Volume 14, Issue 1, pp 70–93 (2016)

https://dl.acm.org/doi/10.1145/2898442.2898444

https://kubernetes.io/docs/concepts/overview/
https://research.google/pubs/pub43438/
https://dl.acm.org/doi/10.1145/2898442.2898444

https://kubernetes.io/

https://kubernetes.io/

Kubernetes high level Architecture

• Highly distributed system
- Control loop pattern

- Asynchronous / event-driven

- Connect to API and listen to events

• Core of Kubernetes: powerful API
- Every aspect is represented as API objects

- Stores the serialized state of objects by writing them
into etcd

- Exposes REST API

- Uses gRPC and protobuf for intra-cluster
communication

- Highly extensible

• Cloud provider specific integration due to
well defined interfaces
- CRI – Container Runtime Interface

- CNI – Container Network Interface

- CSI – Container Storage Interface

Kubernetes API: resources and objects

Kubernetes API: objects represent infrastructure

Kubernetes API: processing pipeline

https://medium.com/@danielepolencic/the-kubernetes-api-architecture-81da0ede0e34

https://medium.com/@danielepolencic/the-kubernetes-api-architecture-81da0ede0e34

Underlying Concepts

K8s and the state: immutable infrastructure

• No in-place modifications possible any more

• CRUD -> Update operations yield Delete and Create
operations

• Strict separation between stateless components and
persistency layer

• Requires a different operational model: cattle over pets

• Why?
- Reduced complexity

- Reduced risk of unwanted side effects

- Fully versioned infrastructure

- Well-known server states

- No configuration drifts

- End to end testing of infrastructure stacks

- Fewer deployment failures

- Easy rollbacks

https://software.danielwatr ous.com/immutabl e-infrastruc ture-pr oduction-release/

https://software.danielwatrous.com/immutable-infrastructure-production-release/

K8s and the state: declarative code

• Declarative API

- Express desired state in YAML

- Controllers taking care for the fulfillment

• Decouples user from implementation

details

• Frees user from dealing with state

• Reduces complexity for the user

Imperative Declarative

Specify the how to get the

desired result by providing
detailed instructions

Specify the what result is

expected from the program

Direct the control flow of the

program

Define the expected result

without directing the
program's control flow

The developer makes the

major decisions about how
the program works

The compiler makes the

major decisions about how
the program works

Code needs to deal with

current state

Code only needs to state the

desired state; controller
implementation needs to deal

with state

complex code simple and clean code

It uses mutable variables,

i.e., the values of variables
can change during program

execution.

It uses immutable variables,

i.e., the values of variables
cannot change

K8s and the state: controller

K8s and the state: common controllers

• Scheduler
- watches for newly created Pods with no assigned node, and selects a node for them to run on

- Factors taken into account for scheduling decisions include: individual and collective resource requirements,

hardware/software/policy constraints, affinity and anti-affinity specifications, data locality, inter-workload interference, and deadlines

• Controllers
- Node controller: Responsible for noticing and responding when nodes go down

- Job controller: Watches for Job objects that represent one-off tasks, then creates Pods to run those tasks to completion.

- EndpointSlice controller: Populates EndpointSlice objects (to provide a link between Services and Pods)

- ServiceAccount controller: Create default ServiceAccounts for new namespaces.

• Cloud Controllers
- Node controller: For checking the cloud provider to determine if a node has been deleted in the cloud after it stops responding

- Route controller: For setting up routes in the underlying cloud infrastructure

- Service controller: For creating, updating and deleting cloud provider load balancers

- Ingress controller: For creating HTTP routing rules

- DNS Controller: For creating A records in managed DNS zones to route traffic onto a certain domain

K8s as framework: operator pattern

• Automate repetitive operational tasks

• Extend API and introduce Custom Resources

• Implement custom controllers

• Listening for appropriate events

• Implement operational procedures as code

• Lifecycle management through CRDs versioning

• Examples

- Let’s Encrypt

- Prometheus Operator

- Argo CD

- Postgres Operator

- Istio

K8s as framework: Cluster API

Utilize the operator pattern

to manage k8s cluster with

the help of k8s

Cluster as a set of

machines and underlying

infrastructure represented
as API objects

https://itnext.io/multi-cloud-and-multi-cluster-declarative-kubernetes-cluster-creation-and-management-with-cluster-6df8efdc2a89

https://itnext.io/multi-cloud-and-multi-cluster-declarative-kubernetes-cluster-creation-and-management-with-cluster-6df8efdc2a89

Is it worth all the fuss?

"Most people are capable of building systems that are twice

as complex as the systems they are capable of maintaining.”

@casio_juarez

https://twitter.com/casio_juarez

C
lo

u
d

E
n

v
ir

o
n

m
e
n

t
K

u
b

e
rn

e
te

s

P
la

tf
o

rm

A
p

p
li
c
a
ti

o
n

L
a
y
e
r

etcd API

controller scheduler

Controller

Nodes

kubelet kube-proxy

dns
container

runtime

Worker

NodesK
8

S
C

L
U

S
T
E

R

CRI CNI CSI

Cloud Provider Integration

Auth / IAM

C
L

U
S

T
E

R

S
E

R
V

IC
E

S

Policies Registry Logging Metrics Backup

A
P

P
S

Black Box Self ManagedWhite Box Grey Box

D
A

T
A

S
E

R
V

IC
E

S

KV MQRDBMS NoSQL Cache

C
lo

u
d

 N
a

ti
v

e
 S

ta
c

k

Ingress DNS Cert Manager

A
P

P
S

E
R

V
IC

E
S

Monitoring APM
Security

Scanning

Identity (IAM) CredentialsRegistryStorageNetworksCompute
Virtual

Machines
Managed Services

C
L

O
U

D
P

L
A

T
F

O
R

M

IN
F

R
A

R
E

S
O

U
R

C
E

S

Security Services

D
E

V
O

P
S

S
E

R
V

IC
E

S
Managed Git Managed CD Code Security

Service

Mesh
TracingAPI

Gateway

C
L

O
U

D
N

A
T
IV

E

S
E

R
V

IC
E

S

Service

Catalog

Why is Kubernetes that complex?

• By intention: we deliberately introduce complexity as a strategy to deal with

complexity, but complexity does not simply disappear, it merely moves between layers

and parties

• Inherent nature of distributed systems

• Platform incorporated more and more generalised application functionalities

• Extensibility is a two-edged sword

• Flexibility leaves a lot of knobs to turn

• Plethora of involved components

• Lifecycle management

- Each cluster component is subject of lifecycle mgmt

- Tight coupling of applications with runtime and dependencies puts developers in the drivers seat

Conclusions: complexity for the good

• Harnessing immutable infrastructure paradigm reduces complexity

• Abstraction from infrastructure

- A developer never needs to login to a particular node any more

- But in order to assess performance, infrastructure categories are still relevant

• Allows to establish an explicit shared responsibility model between infrastructure-,

platform-, and software engineering

• Degree of automation allows new ways of thinking

Conclusions: strategic relevance

• Strategic relevance

- Kubernetes is more than only a container

orchestration engine!

- Universal control plane for consuming data center

services (compute, network, storage, IAM, resource

control, scaling)

- A platform to build platforms

- The operating system of the cloud

- Complexity shift from apps into the platform

• Key features:

- Decouples workload from infrastructure

- Enables differentiation and specialisation by

introducing well-defined and robust interfaces

- Portable across cloud vendors

• Recommended scenarios

- Boosts application modernisation

initiatives

- Map microservices onto a fleet of

compute nodes

- Build custom PaaS platform

- Operational framework for building

SaaS products

- Run AI stacks – batch training jobs

- Unified security layer

- Edge computing

• Bachelor- / Master theses

• Cloud Native Engineer

• Cloud Native Consultant

• DevOps Engineer

• Kubernetes Engineer

• Site Reliability Engineer

Claranet, a place for talented people, partner-

like customers, collaborative culture, personal

growth, innovative technologies, vibrant

international community

Wanna join the Cloud Native movement?

Check out https://www.claranet.de/jobs

https://www.claranet.de/jobs

	Slide 1
	Slide 2: About
	Slide 3: About
	Slide 4: About the Team
	Slide 5: About: Claranet group
	Slide 6: About: Claranet DACH
	Slide 7: Highly accredited with cloud vendors
	Slide 8: Claranet Service Portfolio
	Slide 9: What expects you in this lecture?
	Slide 10: Poll
	Slide 11
	Slide 12: Premises
	Slide 13: Definition: Cloud Native
	Slide 14: Guiding principles
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Cloud Native Reference Model
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Application first, infrastructure second!
	Slide 31
	Slide 35
	Slide 36: Containers as universal shipping format
	Slide 37: So, what the heck is Kubernetes?
	Slide 38
	Slide 39: Kubernetes high level Architecture
	Slide 40: Kubernetes API: resources and objects
	Slide 41: Kubernetes API: objects represent infrastructure
	Slide 42: Kubernetes API: processing pipeline
	Slide 43
	Slide 44: K8s and the state: immutable infrastructure
	Slide 45: K8s and the state: declarative code
	Slide 46: K8s and the state: controller
	Slide 47: K8s and the state: common controllers
	Slide 48: K8s as framework: operator pattern
	Slide 49: K8s as framework: Cluster API
	Slide 52
	Slide 53
	Slide 54: Why is Kubernetes that complex?
	Slide 56: Conclusions: complexity for the good
	Slide 57: Conclusions: strategic relevance
	Slide 58
	Slide 59

